The Exomiser is a Java program that finds potential disease-causing variants from whole-exome or whole-genome sequencing data.

Starting from a VCF file and a set of phenotypes encoded using the Human Phenotype Ontology (HPO) it will annotate, filter and prioritise likely causative variants. The program does this based on user-defined criteria such as a variant’s predicted pathogenicity, frequency of occurrence in a population and also how closely the given phenotype matches the known phenotype of diseased genes from human and model organism data.

The functional annotation of variants is handled by Jannovar and uses UCSC KnownGene transcript definitions and hg19 genomic coordinates.

Variants are prioritised according to user-defined criteria on variant frequency, pathogenicity, quality, inheritance pattern, and model organism phenotype data. Predicted pathogenicity data is extracted from the dbNSFP resource. Variant frequency data is taken from the 1000 Genomes, ESP and ExAC datasets. Subsets of these frequency and pathogenicity data can be defined to further tune the analysis. Cross-species phenotype comparisons come from our PhenoDigm tool powered by the OWLTools OWLSim algorithm.

The Exomiser was developed by the Computational Biology and Bioinformatics group at the Institute for Medical Genetics and Human Genetics of the Charité - Universitätsmedizin Berlin, the Mouse Informatics Group at the Sanger Institute and other members of the Monarch initiative.